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The main problems in drawing causal inferences from
epidemiological case-control studies are confounding by
unmeasured extraneous factors, selection bias and differential
misclassification of exposure1. In genetics the first of these, in
the form of population structure, has dominated recent
debate2–4. Population structure explained part of the significant
+11.2% inflation of test statistics we observed in an analysis of
6,322 nonsynonymous SNPs in 816 cases of type 1 diabetes
and 877 population-based controls from Great Britain. The
remainder of the inflation resulted from differential bias in
genotype scoring between case and control DNA samples,
which originated from two laboratories, causing false-positive
associations. To avoid excluding SNPs and losing valuable
information, we extended the genomic control method2–5

by applying a variable downweighting to each SNP.

The results reported here concern the first phase of a study that will
eventually include 8,000 cases of type 1 diabetes (T1D; Genetic
Resource Investigating Diabetes study)6,7 and 8,000 controls drawn
from the 1958 British Birth Cohort. The aim of this first phase was to
create a short list of the nonsynonymous SNPs (nsSNPs) most closely
associated with disease for testing in larger numbers of subjects in later
phases; on its own, this phase is underpowered to detect all but the
strongest associations (odds ratios 4 1.7), which we believe will be rare
in common, multifactorial diseases8. This project was an analysis of
more than 12,000 nsSNPs in 2,000 DNA samples using the newly des-
cribed, highly multiplexed MegAllele technology9,10. Given the magni-
tude of the project and our expectation that we would be searching for
effect sizes mainly in the range of odds ratios of 1.1–1.5 (ref. 8), which
could easily be generated or confounded artifactually by subtle and
hidden biases, we wanted to limit potential biases that could arise from
shifts in any of its components, including subtle variations in liquid
handling, reagents, software and technology. DNA samples, which were
all from lymphoblastoid cell lines, were extracted using the same proto-
col in two different laboratories. Case and control DNAs were arranged

randomly, and the teams were blinded to the case-control status so that
case-control status could not have an effect on sample processing
during genotyping. Initially, we scored genotypes of cases and controls
together, as blind scoring is normally regarded as a prerequisite for
inclusion of studies in meta-analyses. We tried to obtain as much data
as possible from as many of the nsSNP assays as possible: each nsSNP
lost is a potential causal variant for T1D lost to the study.

Our previous extensive experience with manually scored, singleplex
SNP technologies, Taqman and Invader6,7,11, indicated that target
sequences with SNPs in the genome vary widely in their ease of allelic
discrimination and PCR efficiency, thereby producing a wide range in
the extent of clustering within the clouds of fluorescent signal data
points for the three genotype classes. We routinely reject singleplex
assays that show overlap between either of the homozygous clouds and
the heterozygous one (called half-calls) upon visual inspection; this is
not a cost-efficient approach when thousands of SNPs are assayed
simultaneously. Here, we scored genotypes automatically. Our initial
results showed some extreme associations that could not be replicated
with singleplex genotyping (data not shown). We observed that, for
some nsSNPs, the positions of the data clouds differed between cases
and controls (Fig. 1a,b), resulting in spurious case-control differences.
In extreme cases, instead of three clouds representing the two homo-
zygous and one heterozygous genotypes, we observed four clouds: the
heterozygous case and control clouds were quite distinct (e.g., the
CD44 SNP rs9666607; Fig. 1a). When separation of the signal clouds
corresponding to different genotypes is anything other than perfect,
automated scoring algorithms face a dilemma: attempting to score a
high proportion of samples runs the risk of assigning erroneous
genotypes. But adopting the conservative strategy of calling only
genotypes with a high degree of certainty (perfectly separated clouds)
is also not free from problems. Failure to call will not be independent
of genotype, a phenomenon called ‘informative missingness’, leading to
bias in allele and genotype frequencies that are estimated using only
called samples. When, as here, signal clouds for cases and controls are
displaced, the likely result with either strategy is differential bias
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resulting in false-positive association (e.g., the IL13 SNP rs20541;
Fig. 1c,d). Even SNPs that show 100% genotype concordance between
two different genotyping platforms could suffer from differential bias.
Moreover, despite the fact that all DNA samples came from cell lines
and were obtained using the same extraction protocol, underlying,
unexplained differences remained between the two sample sets in the
interaction of DNA source and the allelic discrimination chemistry.
Therefore, we modified our strategy by scoring cases and controls
separately to adapt to cloud shifts. For calibration of typing rules, the
use of a single, standard set of DNA samples (such as a HapMap set12)
would not have solved this difficulty and could have exacerbated it.

We generated a quantile-quantile plot of observed Cochran-
Armitage test statistics for disease association versus each of the
6,322 common autosomal nsSNPs scored in 816 cases and 877 controls
(Fig. 2). The 168 nsSNPs in the HLA region were excluded, because
many of them showed the expected very strong associations with T1D.
We also excluded any results with extreme deviation from Hardy-
Weinberg equilibrium in either the controls or the cases, because this
could be indicative of a missing genotype cloud due to serious
genotyping failure. The tests are ranked from smallest to largest and
plotted against their expected values under the global null hypothesis
that no true association exists. There were still some extreme results,
which was unexpected given the small sample size, and evidence of
general inflation of the test statistics, as shown in the plot by the line of
slope l ¼ 1.112 (+11.2%; 95% confidence interval ¼ 1.069–1.157)
obtained by fitting a line to the lower 90% of the distribution (Fig. 2).
Scoring cases and controls separately did not fully solve the problem of
differential bias due to displacement of the genotype clouds and might

even have itself contributed to overdispersion of test statistics. We
studied the determinants of this overdispersion using generalized
linear modeling and found that it was best predicted by a combination
of the half-call rate and the difference between call rates for cases and
controls. By restricting the analysis to the 4,620 nsSNPs with half-call
rates of o0.25% and difference in call rates within ±5%, the inflation
of association test statistics was reduced to +5.0% (95% confidence
interval ¼ 1.003–1.098; Fig. 3).

Population structure could be a cause of the remaining 5% inflation
in this subset of 4,629 nsSNPs2–4. Although both case and control
samples were drawn from throughout Great Britain, there were
differences in their geographical distribution, with cases outnumber-
ing controls by almost 2:1 in Scotland and in northern England, and
controls outnumbering cases by a similar margin in London and in
southern and southeastern England. Stratified tests in which cases and
controls are compared within geographical regions showed minimal
overdispersion (+1.5%; 95% confidence interval ¼ 0.969–1.062) for
the 4,629 nsSNPs (Fig. 4). Once between-region variation in nsSNP
allele frequencies in the British population was taken into account (by
matching cases and controls within 12 regions of Great Britain), there
was little or no evidence of residual population structure effects in test
statistic inflation.

The differential bias affected many nsSNPs to varying degrees.
Imposing rigorous quality thresholds, by removing 1,693 nsSNPs
with imperfect genotype clouds from the analysis, risks discarding
potentially valuable data and missing true positive findings that would
not be included in phase 2 genotyping (in a second, independent set of
cases and controls). To emphasize this point, imposing the even more
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Figure 1 Signal intensity plots. (a) Signal intensity plot for CD44 SNP rs9666607. (b) Transformed signal intensity plot for CD44 SNP rs9666607.

(c) Signal intensity plot for IL13 SNP rs2054. (d) Transformed signal intensity plot for IL13 SNP rs2054.

0

10

20

30

40

O
bs

er
ve

d

0 5 10 15
Expected

Tests
y = x
y = 1.112x

Figure 2 Quantile-quantile plots of Cochran-Armitage test statistics. The

ranked, observed values for 6,322 nsSNPs are plotted against the values

expected for sampling from a w2 distribution with one degree of freedom

(the distribution expected under the null hypothesis).
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Figure 3 Quantile-quantile plots of Cochran-Armitage test statistics of

4,629 nsSNPs with half-call rates o0.5% and a difference in call rates

between cases and controls of no more than 5%.
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stringent limit of 0.1% for half-call rates left 2,943 nsSNPs for which
the overdispersion was only +0.4%, but with the loss of considerable
data. A compromise is suggested by the idea of genomic control for sub
structure5 in which w2 statistics are downweighted by multiplying them
by a factor 1/l, where l is the variance inflation factor. This idea may
be extended to deal with differential genotyping calling: the generalized
linear model that we used to explore the predictors of overdispersion
of test statistics can also generate a weighting factor for each nsSNP (a
function of half-call rate and absolute difference in call rates) so that
overdispersion is reduced to the level observed for the nsSNPs with
lowest half-call and highest call rates (Supplementary Note online).
This procedure allowed us to use the data from all 6,322 nsSNPs
(l ¼ 1.000; Fig. 5). The weighting factors varied in magnitude from
0.46 for the 79 nsSNPs with the lowest quality clouds to 1.0 for the
3,271 best nsSNPs; most nsSNPs (94.4%) had weighting factors of
40.8. There is a loss of power for the B5% of nsSNPs that were
downweighted, but this is preferable to excluding them completely. It
remains possible that the model for overdispersion could be improved,
perhaps by including metrics derived from fluorescence intensity mea-
sures. This would further improve the specificity of downweighting.

We have no reason to believe that the phenomenon that led to
differential bias in our study is specific to this genotyping platform.
The best way to avoid increased false-positive rates due to such biases
is to control all aspects of DNA source, preparation and genotyping
using the paradigms of blindness and randomization, but this will not
always be possible. The success of the selective downweighting
approach described here depends on the availability of informative
diagnostics from automated scoring software, as applying a uniform,
overall correction to critical values to control the type 1 error rate
would result in unnecessary loss of power for reliably scored SNPs. For
example, the effect of the observed differential bias was to inflate w2

tests by B6%; extrapolating this to our final 8,000 cases and 8,000
controls would suggest at least 50% inflation. Use of a single correction
to control the type 1 error to 10�6 on a perfectly typed marker would
reduce a 90% power to less than 60%, a 70% power to 30%, and a
50% power to less than 20%. Therefore, it is preferable to apply such
corrections more selectively. There is a need for better diagnostics for
genotyping scoring software and, perhaps, for more flexibility in
allowing discrimination rules to adapt to sample characteristics. We
also showed that power can be preserved in British case-control studies
by matching cases and controls by specific geographical regions.

The highly multiplexed genotyping platforms to be used in whole-
genome association studies will inevitably be subject to errors in
assigning genotypes. Exclusion of ambiguous calls is no remedy, as this
too can distort recorded genotype frequencies. Coupled with subtle

differences in sample preparation, which may be impossible to
exclude, these biases can lead to increased false-positive rates. These
may outweigh the effects of population substructure, which have long
been a concern for population-based studies. As for the effects of
substructure, the ideal solution is to exclude such problems by using
improved methods. Although some assays may be so poor that they
must be excluded, rather less serious and more widespread biases due
to differential misclassification and differential call rate may remain.
The idea of genomic control can then be extended to correct the
consequent effects on the false-positive rate.

METHODS
Subjects. The case sample comprised 1,024 cases of T1D from the Juvenile

Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation

Laboratory’s Genetic Resource Investigating Diabetes study. This is a subsample

of a resource that is projected to reach 8,000 by the end of 2006. Most cases

(64.6%) were o16 years of age at the time of collection of the samples, all

resided in Great Britain, and all were of (self-reported) European descent. The

control sample comprised 1,023 participants in a cohort study of all births in

Great Britain during a single week in 1958. The control sample donors resided

throughout Great Britain and 497% were of European descent.

DNA preparation. DNA samples were processed in two different laboratories

using the same protocol. Blood peripheral lymphocytes were isolated from

whole blood and used to create immortalized lymphoblastoid lines using

Epstein Barr virus. These lines were then expanded to produce cell pellets for

DNA extraction. The DNA was extracted from these cell pellets using an

organic extraction method, which uses chloroform to isolate the DNA and

ethanol to precipitate it. Resultant DNA was resuspended in Tris-EDTA buffer

and quantified using Picogreen Reagent. On receipt of the control DNA at the

Diabetes and Inflammation Laboratory, it was requantified using the same

Picogreen method used to quantify the case DNA to supply the assay with equal

amounts of both case and control DNA. After requantification, samples were

normalized to a concentration of 150 ng ml–1 as required by the Affymetrix

genotyping platform and interdigitated into 96-well plates.

Genotyping reactions. Molecular inversion probes were designed and ordered

from ParAllele Bioscience. The genotyping reactions were carried out using the

standard protocol recommended by the manufacturer and as described9,10, at

Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflam-

mation Laboratory and at ParAllele Bioscience. Molecular inversion assays were

carried out in 96-well plates using 24 individuals per plate for each of four allele

channels using the MegAllele genotyping kit (ParAllele BioScience). Compar-

ison and follow-up genotyping was carried out using the singleplex Taqman

MGB chemistry (ABI).

Automated genotype calling. Genotypes were scored at ParAllele Bioscience

using Euclidean clustering analysis of the ‘contrast’ measures derived from the

normalized signal intensities using the EM algorithm. For a SNP with alleles A
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Figure 4 Quantile-quantile plots of tests for association for 4,629 nsSNPs

after stratification by broad geographical region.
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Figure 5 Quantile-quantile plots of geographically stratified test statistics

for 6,322 nsSNPs with downweighting as a function of half-call rate and
differential call rate.
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and G and signal intensities IA and IG, respectively, sum signal ¼ IA + IG and

contrast ¼
sinh

2ðIA IG Þ
IA + IG

� �

sinhð2Þ . In this analysis, for each SNP, estimates of the genotype

frequencies and of the mean and variance of the signal contrast measure for

each genotype are computed. At the same time, ‘posterior’ probabilities of

possible individual genotype assignments are calculated. Positive calls are made

if the ratio of posterior probabilities for the most probable call and the next

most probable call exceeds a threshold. A half-call is made when this condition

is not met but when one of the homozygous genotypes can be excluded at the

same threshold. Although half-calls are classified as missing genotypes, the half-

call rate is a useful parameter in finding clusters susceptible to genotyping bias.

As genotype clusters for cases and controls were displaced for some markers,

we scored case and control genotypes separately. But this could be expected to

introduce some inflation of test statistics. As outlined above, individual calls are

guided to some extent by estimates of genotype frequencies. By scoring

separately, we allowed these estimates to differ between cases and controls;

the effect of this is to inflate the variance of case-control contrasts, in much the

same way as ‘‘cryptic relatedness’’ introduces correlation between cases and

between controls, but not between cases and controls5. This effect will be most

pronounced for those SNPs in which clusters are overlapping, as calls are then

more dependent on estimated genotype frequencies; this explains why the half-

call rate is a good predictor of overdispersion.

Selection of SNPs. In May 2004 we identified 17,599 nsSNPs by a search of

dbSNP version 120; 12,340 were attempted and 10,469 passed a fluorescence

signal threshold in a test plate containing local controls and 55 DNA samples

from the HapMap12 Centre d’Etude du Polymorphisme Humain panel.

Concordance with Illumina BeadArray technology was 99.2% for the 2,980

nsSNPs in common in HapMap release 8. The scoring software incorporated

four quality control criteria: call rate 480%; half-call rate o10%; signal to

background ratio 430; and controls coefficient of variation o30%. Any case

or control sample not satisfying all of these criteria failed. For 816 cases and 877

controls, 9,025 nsSNPs were judged to have working assays according to the

above minimum quality control metrics, and 8,134 of these were polymorphic.

We excluded 168 nsSNPs in the HLA region (25–35 Mb on chromosome 6p)

and deferred analysis of 45 nsSNPs on the X chromosome. Of the remaining

7,931 nsSNPs, 6,539 had minor allele frequency 41%. We instituted further

quality control checks to detect gross failures, such as nondetection of one or

more genotype clusters. Another ten nsSNPs were rejected because they were

monomorphic in cases or controls, and an additional 207 were rejected owing

to gross departure from Hardy-Weinberg equilibrium in one or both groups

(w2 4 16). Of the Hardy-Weinberg failures, 118 were consistent with missing

genotype clusters; of the remaining 89, 31 failed in both cases and controls, 31

in controls only and 27 in cases only. It is possible, though unlikely, that one or

more of the extreme HWE failures in the cases is a genuine disease association,

and we intend to investigate this possibility.

Statistical methods. All statistical tests used were asymptotically distributed as

w2 with one degree of freedom under the null hypothesis. Quantile-quantile

plots were produced by plotting the ranked values of the test statistic against the

(approximate) expected order statistic, F–1[i / (N + 1)], where F() is the w2(1)

cumulative distribution function and i ¼ 1yN represent ranks from smallest

(i ¼ 1) to largest (i ¼ N) value. We estimated an overdispersion factor, l, by

calculating the ratio of the mean of the smallest 90% of observed test statistics

to the mean of the corresponding expected values. Test statistics plotted in

Figures 2 and 3 are Cochran-Armitage one-degree-of-freedom tests for the

3 � 2 tables formed by cross-classifying subjects by genotype and disease

status13. To allow for geographic variation of the case:control ratio (Figs. 4 and

5), we carried out stratified comparison within 12 geographic regions, using the

one–degree-of-freedom stratified trend test proposed14. We studied the deter-

minants of overdispersion using a generalized linear model15, specifying a

gamma family for the distribution of test statistics and logarithmic link for the

effects of the predictors of overdispersion. We tried many possible predictors,

including call rates in both cases and controls, average signal strengths and half-

call rates (signals that lay between the main homozygous and heterozygous

clusters). Two independently significant predictors were found: the half-call

rate and the absolute difference in call rates between cases and controls. To

obtain the corrected values plotted in Figure 5, half-call rates were classified as

a four-level factor (0, up to 0.25%, 0.25–5%, or 45%) and the difference in call

rates was classified as a binary factor (r5% or 45%). This model was highly

predictive of overdispersion (w2 due to model ¼ 53.58 on 6 degrees of

freedom). We then used the fitted model to calculate a multiplicative correction

factor for each group of tests to correct their mean to that for the ‘perfect’

category (0 half-call rate and differential call rate o0.25%). Additional

information about the genotype calling procedures can be found in Supple-

mentary Note and ref. 16.

URLs. Information about the Genetic Resource Investigating Diabetes study is

available at http://www-gene.cimr.cam.ac.uk/ucdr/grid.shtml. Information

about the 1958 British Birth Cohort is available at http://www.cls.ioe.ac.uk/.

dbSNP version 120 is available at http://www.ncbi.nlm.nih.gov/projects/SNP/.

Genotype data are available through the Juvenile Diabetes Research Foundation/

Wellcome Trust Diabetes and Inflammation Laboratory homepage at

http://www-gene.cimr.cam.ac.uk/todd/. Results were visualized using the T1D-

specific genome browser, T1DBase (http://www.t1dbase.org/).

Note: Supplementary information is available on the Nature Genetics website.
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